近年来,已经提出了各种解释方法,以帮助用户深入了解神经网络返回的结果,神经网络是复杂而不透明的黑盒子。但是,解释产生了潜在的侧道渠道,这可以由对对手进行安装攻击的对手所利用。特别是,事后解释方法根据输入维度根据其重要性或与结果相关性突出显示,也泄露了削弱安全性和隐私性的信息。在这项工作中,我们对各种流行的解释技术产生的隐私风险和安全风险进行了第一个系统表征。首先,我们提出了新颖的解释引导的黑盒逃避攻击,导致查询计数的10倍以相同的成功率。我们表明,可以将解释的对抗优势量化为估计梯度的总方差的降低。其次,我们重新审视通过常见解释泄漏的成员资格信息。与先前研究的观察相反,通过我们的修改攻击,我们显示了会员信息的显着泄漏(即使在更严格的黑盒子设置中,比先前的结果比先前的结果提高了100%)。最后,我们研究了解释引导的模型提取攻击,并通过大量降低查询计数来证明对抗性的增长。
translated by 谷歌翻译
联邦学习本质上很容易模拟中毒攻击,因为其分散性质允许攻击者参与受损的设备。在模型中毒攻击中,攻击者通过上传“中毒”更新来降低目标子任务(例如,作为鸟类的分类平面)模型的性能。在本报告中,我们介绍\ algoname {},这是一种使用全局Top-K更新稀疏和设备级渐变剪辑来减轻模型中毒攻击的新型防御。我们提出了一个理论框架,用于分析防御抗毒攻击的稳健性,并提供我们算法的鲁棒性和收敛性分析。为了验证其经验效率,我们在跨多个基准数据集中进行开放源评估,用于计算机愿景和联合学习。
translated by 谷歌翻译
对抗性培训(AT)已成为培训强大网络的热门选择。然而,它倾向于牺牲清洁精度,以令人满意的鲁棒性,并且遭受大的概括误差。为了解决这些问题,我们提出了平稳的对抗培训(SAT),以我们对损失令人歉端的损失的终人谱指导。 We find that curriculum learning, a scheme that emphasizes on starting "easy" and gradually ramping up on the "difficulty" of training, smooths the adversarial loss landscape for a suitably chosen difficulty metric.我们展示了对普通环境中的课程学习的一般制定,并提出了一种基于最大Hessian特征值(H-SAT)和软MAX概率(P-SA)的两个难度指标。我们展示SAT稳定网络培训即使是大型扰动规范,并且允许网络以更好的清洁精度运行而与鲁棒性权衡曲线相比。与AT,交易和其他基线相比,这导致清洁精度和鲁棒性的显着改善。为了突出一些结果,我们的最佳模型将分别在CIFAR-100上提高6%和1%的稳健准确性。在Imagenette上,一个十一级想象成的子集,我们的模型分别以正常和强大的准确性达到23%和3%。
translated by 谷歌翻译
Federated learning distributes model training among a multitude of agents, who, guided by privacy concerns, perform training using their local data but share only model parameter updates, for iterative aggregation at the server. In this work, we explore the threat of model poisoning attacks on federated learning initiated by a single, non-colluding malicious agent where the adversarial objective is to cause the model to mis-classify a set of chosen inputs with high confidence. We explore a number of strategies to carry out this attack, starting with simple boosting of the malicious agent's update to overcome the effects of other agents' updates. To increase attack stealth, we propose an alternating minimization strategy, which alternately optimizes for the training loss and the adversarial objective. We follow up by using parameter estimation for the benign agents' updates to improve on attack success. Finally, we use a suite of interpretability techniques to generate visual explanations of model decisions for both benign and malicious models, and show that the explanations are nearly visually indistinguishable. Our results indicate that even a highly constrained adversary can carry out model poisoning attacks while simultaneously maintaining stealth, thus highlighting the vulnerability of the federated learning setting and the need to develop effective defense strategies.
translated by 谷歌翻译
A framework for creating and updating digital twins for dynamical systems from a library of physics-based functions is proposed. The sparse Bayesian machine learning is used to update and derive an interpretable expression for the digital twin. Two approaches for updating the digital twin are proposed. The first approach makes use of both the input and output information from a dynamical system, whereas the second approach utilizes output-only observations to update the digital twin. Both methods use a library of candidate functions representing certain physics to infer new perturbation terms in the existing digital twin model. In both cases, the resulting expressions of updated digital twins are identical, and in addition, the epistemic uncertainties are quantified. In the first approach, the regression problem is derived from a state-space model, whereas in the latter case, the output-only information is treated as a stochastic process. The concepts of It\^o calculus and Kramers-Moyal expansion are being utilized to derive the regression equation. The performance of the proposed approaches is demonstrated using highly nonlinear dynamical systems such as the crack-degradation problem. Numerical results demonstrated in this paper almost exactly identify the correct perturbation terms along with their associated parameters in the dynamical system. The probabilistic nature of the proposed approach also helps in quantifying the uncertainties associated with updated models. The proposed approaches provide an exact and explainable description of the perturbations in digital twin models, which can be directly used for better cyber-physical integration, long-term future predictions, degradation monitoring, and model-agnostic control.
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
We propose a novel model agnostic data-driven reliability analysis framework for time-dependent reliability analysis. The proposed approach -- referred to as MAntRA -- combines interpretable machine learning, Bayesian statistics, and identifying stochastic dynamic equation to evaluate reliability of stochastically-excited dynamical systems for which the governing physics is \textit{apriori} unknown. A two-stage approach is adopted: in the first stage, an efficient variational Bayesian equation discovery algorithm is developed to determine the governing physics of an underlying stochastic differential equation (SDE) from measured output data. The developed algorithm is efficient and accounts for epistemic uncertainty due to limited and noisy data, and aleatoric uncertainty because of environmental effect and external excitation. In the second stage, the discovered SDE is solved using a stochastic integration scheme and the probability failure is computed. The efficacy of the proposed approach is illustrated on three numerical examples. The results obtained indicate the possible application of the proposed approach for reliability analysis of in-situ and heritage structures from on-site measurements.
translated by 谷歌翻译
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
translated by 谷歌翻译
Consider a scenario in one-shot query-guided object localization where neither an image of the object nor the object category name is available as a query. In such a scenario, a hand-drawn sketch of the object could be a choice for a query. However, hand-drawn crude sketches alone, when used as queries, might be ambiguous for object localization, e.g., a sketch of a laptop could be confused for a sofa. On the other hand, a linguistic definition of the category, e.g., a small portable computer small enough to use in your lap" along with the sketch query, gives better visual and semantic cues for object localization. In this work, we present a multimodal query-guided object localization approach under the challenging open-set setting. In particular, we use queries from two modalities, namely, hand-drawn sketch and description of the object (also known as gloss), to perform object localization. Multimodal query-guided object localization is a challenging task, especially when a large domain gap exists between the queries and the natural images, as well as due to the challenge of combining the complementary and minimal information present across the queries. For example, hand-drawn crude sketches contain abstract shape information of an object, while the text descriptions often capture partial semantic information about a given object category. To address the aforementioned challenges, we present a novel cross-modal attention scheme that guides the region proposal network to generate object proposals relevant to the input queries and a novel orthogonal projection-based proposal scoring technique that scores each proposal with respect to the queries, thereby yielding the final localization results. ...
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译